2叉树排序缺失元素查找

全文共 1062 个字

问题

  1. 在一组相同类型的数据中(对象、数组、字符串、整形等任意类型的数据结构)请用时间空间最优的方式查找缺失的一项。例如有一组数据["A","B","C","D","E","F","G"],现在给到["B","D","A","F"."G"],需要找到缺失数据"C"?数据的个数不定。
  2. 扩展上面的问题,用最优的方式查找缺失的多项。

解决

2层循环逐个比对查找

最简单的办法当然是逐项比对,几乎所有语言都提供对象实例、字符串、数字的比对方法。

但是这样做有2个问题:

  1. 少量数据可行,但是海量数据肯定会非常慢,因为时间复杂度是O(n^2)。而且第一层循环是全遍历,第二层循要遍历n/2。
  2. 在比对过程中如果是字符串比对,效率会非常差。

编码2叉树查找

可以对所有的事物进行有序编码,然后通过编码索引到对应的元素。编码也没有什么特别的要求,只要每增加一项将编码加一即可。例如上面的例子["A","B","C","D","E","F","G"],对其编码建立索引:

{1:"A",2:"B",3:"C",4:"D",5:"E",6:"F",7:"G"}

这是一个标准的dict结构(Java中的map结构)。任何时候增加新的项目只要编码加一即可:

{1:"A",2:"B",3:"C",4:"D",5:"E",6:"F",7:"G",8:"ADD ITEM"}

使用编码还有一个好处是还可以查找一组不同类型的数据。

建立编码之后实际上就转换为一个数字查询问题。

如果仅仅是查找一个缺失项,实际上有一个非常简便的算法——求和计算差值:

    # origin_numbers是所有编码的列表,例如[1,2,3,4,5,6,7,8,9,10]。
    # random_numbers是缺失了一项的编码无序表,例如[6,2,5,4,7,8,9,10,1]。
    for _num in origin_numbers:
        total_sum = total_sum + _num

    for _num in random_numbers:
        without_sum = without_sum + _num

差值正好是缺失的项目索引值。

但是如果是查找多个缺失项,只能用2叉树:

import copy
import random as rand
import datetime
import time


# 2叉树结构
class Link:
    def __init__(self, value):
        self.value = value
        self.left = None
        self.right = None

    def insert(self, value):
        if value < self.value:
            self.__addLeftLeaf__(value)
        else:
            self.__addRightLeaf__(value)

    def __addLeftLeaf__(self, value):
        if self.left is not None:
            self.left.insert(value)
        else:
            self.left = Link(value)

    def __addRightLeaf__(self, value):
        if self.right is not None:
            self.right.insert(value)
        else:
            self.right = Link(value)

    def traversal(self, _list, _without):
        if self.left is not None:
            self.left.traversal(_list, _without)

        length = len(_list)
        if 0 < length:
            tail = _list[length - 1]
            diff = self.value - (tail + 1)
            if 0 < diff:
                for _d in range(1, diff + 1):
                    _without.append(self.value - _d)

        _list.append(self.value)

        if self.right is not None:
            self.right.traversal(_list, _without)


# 从队列中移除项目
def remove_number(without_size, numbers):
    for count in range(without_size):
        del numbers[rand.randrange(len(numbers))]
    return numbers


# 使用有序数组生成随机数组
def generation_random(without_size, origin_numbers):
    origin_numbers_options = copy.copy(origin_numbers)
    length = len(origin_numbers)
    random_numbers = []

    # 随机
    while 0 < length:
        rand_number = rand.randrange(length)
        random_numbers.append(origin_numbers_options[rand_number])
        del origin_numbers_options[rand_number]
        length = len(origin_numbers_options)

    return remove_number(without_size, random_numbers)


# 
def generation_origin_numbers(without_size=1, total=10000):
    origin_numbers = list(range(total))
    return origin_numbers, generation_random(without_size, origin_numbers)


def tree_2_leaf(numbers):
    root = Link(numbers[0])
    for pos in range(1, len(numbers)):
        root.insert(numbers[pos])

    # 使用二叉树
    _list = []
    _without = []

    root.traversal(_list=_list, _without=_without)

    return _without


def without_one_number(origin_numbers, random_numbers):
    print("=============== without_one_number start ==================")
    sum_search_start = time.time()
    total_sum = 0
    without_sum = 0
    print("Sum Search Begin.({})".format(datetime.datetime.now().strftime('%H:%M:%S')))
    for _num in origin_numbers:
        total_sum = total_sum + _num

    for _num in random_numbers:
        without_sum = without_sum + _num
    tree_search_start = sum_search_end = time.time()
    print("Sum Search Complete.({})".format(datetime.datetime.now().strftime('%H:%M:%S')))
    print("Timer:{} S".format(sum_search_end - sum_search_start))
    print("Total Sum:{}".format(total_sum))
    print("Without One Number Sum:{}".format(without_sum))
    print("Without Number:{}".format(total_sum - without_sum))
    print("---")
    print("2 Tree Search Begin.({})".format(datetime.datetime.now().strftime('%H:%M:%S')))
    without_number = tree_2_leaf(random_numbers)
    print("2 Tree Complete.({})".format(datetime.datetime.now().strftime('%H:%M:%S')))
    print("Timer:{} S".format(time.time() - tree_search_start))
    print("Without Element:{}".format(without_number))
    print("=============== without_one_number end ==================")


def without_multi_number(random_numbers):
    print("=============== without_multi_number start ==================")
    start = time.time()
    print("Search Begin.({})".format(datetime.datetime.now().strftime('%H:%M:%S')))
    without_number = tree_2_leaf(random_numbers)
    print("Search End.({})".format(datetime.datetime.now().strftime('%H:%M:%S')))
    print("Timer:{} S".format(time.time() - start))
    print("Without Element:{}".format(without_number))
    print("=============== without_multi_number end ==================")


if __name__ == '__main__':
    print("Generation Numbers Begin.({})".format(datetime.datetime.now().strftime('%H:%M:%S')))
    generation_number_start = time.time()
    origin, random = generation_origin_numbers()
    print("Generation Numbers Complete.({})".format(datetime.datetime.now().strftime('%H:%M:%S')))
    generation_number_end = time.time()
    print("Timer:{} S".format(generation_number_end - generation_number_start))

    without_one_number(origin, random)
    without_multi_number(remove_number(4, random))